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Abstract The past, present, and future of the application of
self-assembled monolayers (SAMs) in electroanalytical
chemistry is reviewed. SAMs for electroanalytical applica-
tions have been introduced in the early 1990s and since
then have been exploited for the detection of different

species ranging from metal ions to biomolecules and
microorganisms. This review describes the different types
of monolayers, surfaces on which they have been assembled,
the various analytes, which were determined, and the various
electrochemical techniques employed. The prospective and
perspectives of this topic are discussed.

Introduction

The recognition that self-assembled monolayers (SAMs)
mostly on conducting surfaces can be used as the sensing
element of an electrochemical sensor has followed closely
the first studies of SAMs. These 2D layers seem to be the
ideal approach of tailoring a surface and therefore controlling
electron transfer, which is the basis of an electrochemical
sensor.

A sensor is a device that measures a physical quantity
and converts it into a signal which can be read by an
observer or by an instrument. The latter is usually made of
at least three consecutive events (Fig. 1): recognition of the
analyte, signal transduction, and signal readout. In electro-
chemical sensors [1–7] signal transduction involves current,
potential or impedance measurements that convert changes
at the electrode–electrolyte interface into an electrical
signal. These changes can follow electron transfer, charge
accumulation, adsorption, or any other event comprising
interactions between the analyte and the electrode surface.
Most of these interactions are sensitive to the surface nature
and morphology and therefore can be altered by a thin
coating, such as a monomolecular layer. Hence, the design
of an electrochemical sensor, regardless of the transduction
involved, will aim, on one hand, at maximizing the
analyte–interface interactions, and on the other hand,
suppressing the interference–interface interactions.
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Analytes can span from atomic or small molecular
species, such as metallic ions and gases to biological
substances including macromolecules, such as enzymes and
antibodies or antigens. To be able to architecture the
electrode–electrolyte interface, and create proper recogni-
tion sites for such a variety of analytes, organic chemistry
must be invoked. Hence, it is not surprising that electroan-
alytical chemistry took immediate advantage of the appear-
ance of a simple approach for assembling organic layers on
electrode materials such as gold and mercury.

This contribution aims to cover most of the reports in
this area, namely, those studies whereby SAMs have been
used as the recognition element, and as a result increased
the sensitivity or selectivity or other properties of the
electrochemical sensor. Hence, those studies where an SAM
was used as a means of attaching a polymeric film or other
components onto an electrode surface are not covered here.
Moreover, we will discuss only systems where the
organization of the SAMs was carried out on the electrode
surface and therefore we will not cover, for example,
Langmuir–Blodgett films. We are aware of a few previous
reviews on this or related topics [8–12]. Reviewing the
literature was accomplished primarily through ISI web of
science database. Categorizing the different studies can be
made on various bases, such as the type of analyte, the
layer, the electrode material, or technique which was used.
To facilitate the reading of this review, we have decided to
focus mostly on the type of monolayer that was used, yet,
we discuss also the electrode material and to some extent
the nature of the analyte, and technique used in different
subsections.

The monolayers

Historically, the first self-assembled monolayers to be
reported were based on alkylsilanes [13]. These were
assembled by the formation of a covalent bond between
the monolayer and the surface. Much later other mono-
layers, such as thiols, have been introduced, and the
terminology of self-assembly expanded and encompassed

all sorts of layers and preparation methods. Thiol SAMs
have become the most popular and common approach for
assembling electrochemical sensors based on organic
monolayers. Hence, we will begin by reviewing the
application of thiol-based SAMs and continue with silane
and other families of organic molecules that are nowadays
used in electroanalytical chemistry.

Thiols

Sulfur compounds are known for their reactivity towards noble
metals and other surfaces. Thiols adsorb spontaneously onto
metals such as silver [14–16], platinum [15–17], palladium
[18] and mercury [19–22], and on semiconductors, e.g., InAs
[23] and GaAs [24]. However, the adsorption of thiols on
gold, which forms an exceptionally strong bond, makes this
system the most commonly used [9, 24, 25]. Gold surface
does not have a stable oxide under ambient conditions [25], it
is easily cleaned and adsorbs impurities weakly [26]. The thiol
groups chemisorb onto the gold surface via the formation of a
S–Au bond to form a densely packed, highly ordered
monolayer. The mechanism of covalent bond formation was
investigated by us [27] and is believed to involve charging
and discharging steps while releasing H2, as described in
Fig. 2. The strong affinity of –SH groups to gold surface lies
on the “soft” nature of both gold and sulfur atoms [26], as
opposed to relatively “hard” atoms introduced by other groups
such as acids or amines. For this reason, functionalization of
gold surfaces using thiols with terminal groups can be
efficiently achieved.

Mercury is commonly used as a substrate for thiols’ self-
assembly as well [28–31]. This electrode exhibits strong
interactions with thiols (which are also called mercaptans
due to their high affinity toward mercury) [9]. Moreover,
mercury, because of its liquid state, is atomically flat.

The preparation of thiol monolayers various metals
involves a very simple protocol. The desired substrate is
dipped into the required dilute solution of the thiols [32].
The layer is formed spontaneously under open-circuit
potential. The deposition is usually carried out in either
protic (ethanol, water) or aprotic (acetonitrile, hexane)
solvents at ambient temperature and under continuous
stirring for periods that vary between a few minutes to
several days [9]. The process is followed by thorough

Fig. 2 Schematics of the adsorption of thiols on gold

Fig. 1 Schematics of an electrochemical sensor
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washing of the substrate with the same solvent and drying,
often using a jet of dry argon [32].

Extensive work has been devoted to the understanding of
the mechanism of layer formation. It is thought to comprise
two steps [9, 26]. Initially, there is a rapid attachment of
the –SH group to a gold atom with formation of an S–Au
bond. The initial fast adsorption step is followed by a
much slower process of organization of the thiols when
the alkyl chains are assembled together to maximize the
van der Waals interactions between them.

These steps result in a well-assembled monolayer in
which the alkyl chains of the thiols are in all trans-
conformation, tilted at an angle of 30° from the normal to
the metal surface in a

ffiffiffi

3
p � ffiffiffi

3
p

R30� adlayer [9, 25].
Moreover, and despite of the S–Au bond being reasonably
strong, the adsorbed alkanethiols still have the ability to
move around the surface [25]. These movements allow the
alkanethiols to diffuse towards defects of exposed gold sites
to maximize the coverage of the surface and to obtain a
densely, highly organized, stable monolayer.

The formed layers can be examined by different
macroscopic and microscopic surface techniques such as
XPS, FTIR, wettability measurements, electrochemistry,
and scanning probe microscopies [9]. The different studies
scrutinize the experimental factors affecting the formation
and packing density of the monolayers. The structure of the
monolayers strongly depends on the substrate and its
morphology [9, 33]. Usually, the roughness of the substrate
is of a similar order or greater than the size of the adsorbate
[25]. Cleaning procedures and pretreatment of the surface
are essential for fabricating atomically flat gold surfaces.
Common pretreatments are chemical treatment in piranha
solution, electrochemical oxidation, and reconstruction in
electrolytes like H2SO4 and flame annealing.

The concentration of the thiol solution also plays a
crucial role in determining the quality of the formed layer.
Formation of ordered monolayers usually requires a dilute
solution, whereas a high concentration favors multilayer
formation [32]. Other parameters controlling the deposition
process are the temperature [34, 35], pH [36, 37], and the
architecture of the electrode [38, 39].

The stability of the layer strongly depends on the nature
of the adsorbate. The strongest binding occurs between
gold and thiol groups, but other species such as disulfides,
thiones, thioesters, etc. have been used [26].

As mentioned, the compactness of the layer relies on the
intermolecular interactions between the adsorbate mole-
cules [9]. Longer aliphatic chains will lead to stronger van
der Waals interactions and hence produce more ordered
SAMs with higher integrity (less defects) and thermal
stability. Molecules, such as 16-hexadecanethiol, lead to
well-packed quasicrystalline monolayers, whereas shorter
thiols, such as 6-hexanethiol, yield liquid-like monolayers.

For this reason, hydrogen bonding [40] or π–π interactions
[14] exhibit even better thermal stability.

The simple procedure for SAM formation, the high
stability, and the strong affinity of the thiols towards a variety
of electrode materials [32] are the reasons for the wide
application of thiols in electroanalytical studies. The use
of monolayers in electroanalytical applications requires
stability over a wide potential window. This was studied
by Beulen et al. [41] who found that adsorbed thiols
exhibit only a limited potential window between approxi-
mately −0.8 and −1.4 V versus SCE.

At more negative potentials thiols are reductively
desorbed (Eq. 1):

R� S� Auþ e� ! R� S� þ AuðsÞ; ð1Þ
where the potential of reductive desorption depends on the
nature of thiol, i.e., chain length, head group repulsion, etc.
For example, more hydrophobic thiols exhibit more
negative desorption potentials [10].

At anodic potentials, an oxidative desorption of thiols
occurs. The mechanism of the oxidation is somewhat
unclear and might involve cleavage of the C–S bond,
oxidation of sulfur to sulfate, and formation of RCO2

− [10].
In spite of the instability in extreme potentials, the exhibited
potential window has been compatible with many electro-
chemical applications [25].

Another limitation of using SAMs of thiols for electro-
analytical applications derives from the necessity of a
conducting interface. For this reason, usually short chain
alkanethiols are used, which enable, on one hand,
electron transfer across the layer, but on the other hand,
reduce the stability of the interface. The most commonly
used thiols have been cysteamine, 3-mercaptopropanoic
acid, 2-mercaptoethanesulfonic acid, mercaptoethanol,
and others.

Thiol-based SAM sensors have been used to monitor
pH, inorganic species, and organic molecules using both
chemical and biological recognition elements. Thiols can be
used in electroanalytical devices in five main approaches
(Fig. 3): (1) functionalized thiols, whereby the thiol bears
functionality typically at the other end of the molecule; (2)
functionalization followed by attachment, where a complex
entity, e.g., cyclodextrin, is thiolated prior to adsorption; (3)
attachment followed by modification, i.e., functionalization
of a thiol-based SAM; (4) attachment of a mixed layer
composed of two or more different thiols; and (5)
attachment followed by incorporation.

Functionalized thiols This is a very common approach
(Fig. 3a) as it takes advantage of commercially available
thiols. The requirements of the thiol are straightforward: the
X group should not interact with either the thiol or the
surface, although alkanedithiol, for example, have also been
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used successfully for the detection of Cd2+ [42]. In
addition, the alkyl (or in some cases the aromatic) chain
should be relatively short to avoid blocking of electron
transfer. The functionality, X, should be stable and have the
highest possible selectivity towards the desired analyte.

The advantages of this approach are clear, simple and cheap
to implement, and of very high sensitivity [22, 43]. On the
other hand, the disadvantages of this concept are that mainly
only small analytes such as metallic ions (Cu2+, Fe3+, Hg2+,
and lanthanide ions) or small organic molecules (dopamine,
ascorbic acid, epinephrine, and uric acid) can be addressed
because of the relatively small distance between the
functional groups. Moreover, the ability to form multidentate
functionalities requires elaborated synthesis, and the
cooperative interaction between a few thiols is not simple
due to the high density of the layer and its relatively rigid
structure.

The most common functionalities that have been
used include carboxylic acids and more specifically 2-
mercaptoethanoic acid, 3-mercaptopropanoic [44–48] acid,
thioglycolic [49, 50] acid, glutathione [51–53], thiolactic
acid [51–55], lipoic acid [56, 57], and mercaptosuccinic
acid [58–61] although longer—up to ten carbons have also
been reported [22, 62]. Cysteine [37, 63–71] and its
derivatives, such as penicillamine [72–74] have also been
extensively used.

Conventional n-alkanethiols were used for the determi-
nation of hydrophobic compounds such as proteins [75],
hydrophobic drugs [76], and organic ordnance molecules
[77]. Other functional groups, such as amine (using
cysteamine [78] or amino-functionalized aromatic thiols
[43, 79–82]) and sulfonate (using mercaptoalkanesulfonic
acid) [83–85] are also commonly introduced. Table 1
summarizes many of the reported studies using this
“functionalized thiols” approach.

Simple commercially available thiols can also be applied
for constructing disorganized layers [84–87]. This is
accomplished by using thiols with a large mismatch

between the head group and the tail to form a selectively
permeable layer. This feature of disorganized layers opens
the way to using them as selective filters for species in
correspondence to the nature of the film. For instance,
Herzog et al. [84, 86] used disorganized monolayers to
protect the electrode surface from the adsorption of
surfactants while simultaneously allowing the underpoten-
tial deposition and stripping of metals ions. Hydrophobic
layer allowed the penetration of organic molecules [87]
while a charged hydrophilic layer was used for the
selective penetration of metallic complexes of opposite
charge [85].

Functionalization followed by attachment The second
approach involves “wet chemistry” that is functionalization
of the thiol prior to its adsorption (Fig. 3b). This allows
applying the conventional and versatile organic synthesis in
solutions, the isolation, purification, and characterization of
the monolayer precursor before assembling the SAM. Since
the thiol group is a rather good nucleophile, synthesis is
often carried out after protecting the thiol by either
formation of the disulfide (R–S–S–R) or introducing other
thiol-protective groups, such as acetyl, benzoyl, and 2-
methoxyisobutyryl [88]. A different approach is to maintain
inert atmosphere during the synthesis and using dry solvent
(e.g., dimethyl formaminde) [89]. Table 2 details numerous
examples whereby different molecules were thiolated
prior to their assembly on gold surfaces. It can be seen
that the nature of the functionalized molecules is very
broad and includes organic species, such as cyclodextrin
and calixarenes as well as biomolecules including DNA
and proteins. The SAMs based on these thiolated
substances were used for detecting a variety of aqueous
soluble species ranging from metal ions to bacteria.

Attachment followed by modification The third approach
complements the previous one and is widely used. The
strong binding of thiols onto gold and other surfaces

Fig. 3 Schematics of the
different approaches for
assembling thiol-based SAMs.
a Functionalized thiols,
b functionalization
followed by attachment,
c attachment followed by
functionalization, d attachment
of a mixed layer, and
e attachment followed by
incorporation
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provides an effective way to use these molecules as primers
for immobilization of further organic and biologic com-
pounds with different functions [10] (Fig. 3c). The layer
remains chemically intact even after coupling with the
immobilizing molecules [32]. Moreover, only a minor
amount of modifier is needed for immobilization on the
functionalized SAM [32]. Furthermore, either a single or

multirecognition elements can be introduced to the elec-
trode using more than one type of recognition molecule
which operates cooperatively [25].

The immobilized feature can be attached to the layer
through covalent links (such as amide bonds and Schiff ’s base
formation [90, 91]) either directly to the functionalized thiol
monolayer [35, 92–99] or by the assistance of bridging

Thiolated compound Analyte Reference

Cyclodextrin Metal ions [19, 319]

Electrochemically active organic
analytes, e.g., catecholamines, TNT

[320–323]

Electrochemically inactive organic
analytes (e.g., glucose)

[324–326]

DNA probe DNA hybridization [136–139, 273, 327]

Proteins [140, 143, 308]

Virus and bacteria [144, 328, 329]

Calixarene Metal ions, catecholamines [220, 330, 331]

Metallic complexes pH [126]

Inorganic analytes [278]

Organic analytes [275, 298]

Proteins Nitroaromatic compounds, antigens [332, 333]

Polymers and macrocyclic
polymolecules

Metal ions [299, 334, 335]

Nonelectroactive organic analytes [145, 336]

DNA [337]

Organic compounds pH [338]

Metal ions [339, 340]

Organic analytes [341–344]

Table 2 Thiolated compound-
based SAMs and their
electroanalytical applications

TNT troponin T

Thiol Analyte Reference

Mercaptoalkanoic acids pH [62]

Metal ions [44, 46, 48, 62]

Catecholamines [45, 47]

Other carboxylate functionalized alkanethiols Metal ions [50–53, 57, 58, 61]

Catecholamines [49, 54, 55, 59, 60]

Proteins [56]

Cysteine and derivatives Metal ions [63, 66, 69, 71, 74]

Catecholamines [37, 67, 70, 72, 73]

Large organic/biomolecules [64, 65, 68]

n-Alkanethiols pH [311]

Organic molecules [75–77, 312]

1,n-Alkanedithiols Metal ions [42, 313]

Cysteamine Catecholamines [78]

Amino-functionalized aromatic thiols Metal ions [43, 314, 315]

Organic/biomolecules [79–82]

Mercaptoquinone derivatives Metal ions [316]

Organic molecules [316, 317]

Proteins [318]

Mercaptoalkane sulfonic acids Metal ions [83–85]

Table 1 Functionalized thiols
and their electroanalytical
applications

J Solid State Electrochem (2011) 15:1535–1558 1539



molecules (most common—glutardealdehyde [100–107]).
The attachment of DNA or other probes is often carried
out in the presence of 1-ethyl-3-(3-dimethylaminopropyl)-
carbodiimide (EDC) and N-hydroxysuccinimide (NHS)
[108–112]. Other noncovalent coupling comprises electro-

static [90, 91, 113–118] and hydrophobic/hydrophilic
interactions. Metallic complexes are often bound to the
electrode through coupling reactions [119–123]. The
immobilization can also be driven by affinity interactions,
such as receptor–protein recognition and antigen–antibody

Table 3 Functionalizations of thiol-based SAMs and their electroanalytical applications

Modifier Analyte Thiol Reference

Proteins

Glucose oxidase Glucose Carboxylate-terminated thiols [102, 103, 127, 345–347]

Amino-terminated thiols [127, 348]

Cytochrome C NO, O2
−, H2O2 Carboxylate-terminated thiols [349, 350]

Mixed hydroxyl/amino and
carboxylate-terminated thiols

[92, 128, 133–135]

Penicillamine/cysteine [351, 352]

n-Alkanethiols [353]

Other oxidases (e.g., tyrosinase,
horseradish peroxidase,
alcohol oxidase, etc.)

Alcohols, catechol,
catecholamines,
H2O2, lactate, etc.

Carboxylate-terminated thiols [354–357]

Amino-terminated thiols [104, 106, 358, 359]

Mixed hydroxyl/amino and
carboxylate-terminated thiols

[128, 353]

Dehydrogenases (e.g.,
fructose dehydrogenase,
superoxide dismutase)

Alcohols, uric and gluconic
acids, fructose, O2

-
Carboxylate-terminated thiols [100, 101]

Thiol-substituted nucleobases [360]

Amino-terminated thiols [361, 362]

Hemoglobin H2O2 Amino-terminated thiols [363]

Phosphonic acid-terminated thiols [364]

Peptides Metal ions Carboxylate-terminated thiols [35, 98, 365–368]

Nucleic acids

ssDNA DNA hybridization Carboxylate-terminated thiols [97, 108–110]

Amino-terminated thiols [369]

dsDNA Electroactive/nonelectroactive
organic molecules and drugs

Azide-terminated thiols [370, 371]

Amino-terminated thiols [115]

Avidin [125]

PNA DNA hybridization Carboxylate-terminated thiols [111, 306]

Amino-terminated thiols [112, 372]

Antibodies Proteins, toxic antigens, bacteria Carboxylate-terminated thiols [38, 93, 124, 284, 294, 373–375]

Amino-terminated thiols [38, 105, 309, 376–378]

Sulfonate-terminated thiols [310]

Thiol-terminated thiols (dithiols) [379]

Nanoparticles

Au NPs Catecholamines, proteins,
peptides, DNA, H2O2

Thiol-terminated thiols (dithiols) [380–384]

Amino-terminated thiols [107, 117, 385–390]

CNT Aromatic compound, DNA n-Alkanethiols [285]

Amino-terminated thiols [300]

Prussian blue NPs H2O2 Cysteine or dithiols [391]

Metallic complexes

Iron complexes Organic (e.g., hydrazine) and
inorganic (e.g., SCN−, H2O2)
compounds

Hydroxyl-terminated thiols [121]

Thiolated pyridine [122, 123]

Cysteine [118]

Cobalt complexes H2O2, cysteine Hydroxyl-terminated thiols [119–121]

Copper complexes Catecholamines Carboxylate-terminated thiols [113]

PNA peptic nucleic acid

1540 J Solid State Electrochem (2011) 15:1535–1558



pairs. Biotin–avidin is one unique example, leading to
this type of surface immobilization [32, 124, 125].
Table 3 provides many examples of this approach. It can
be seen that a wide variety of modifiers, e.g., proteins and
nucleic acids, have been attached by coupling to activated
thiols and have been used to determine different analytes.
It should be noted that this approach allows introducing
different enzymatic or other highly selective recognition
factors for maximizing the analyte–SAM interactions.

Attachment of a mixed layer The fourth approach is based
on the formation of a multicomponent SAM as a result of
adsorption from a mixture of thiols [25] (Fig. 3d). The
monolayer can be functionalized prior or after attachment
of the thiols.

One advantage of such mixed system is the ability to
construct integrated molecular systems where several
components are incorporated within a single monolayer
[25, 126–132]. Yet, the principal application of mixed
monolayers is to allow large recognition elements to be
spaced apart from each other. Furthermore, by varying the
composition of a mixed SAM, the density of attachment
points, and hence the surface loading of recognition
molecules, can be controlled while blocking bare areas of
electrode. One example is the controlled immobilization of
cytochrome C. This recognition element can be covalently
bound to carboxylic moieties. Hence, a spacer having either
amine [133, 134] or hydroxyl [92, 135] end groups was
used. Another example is the attachment of thiolated DNA
probes. These are often used for the determination of large
biological molecules, such as target DNA [136–142], proteins
[140, 143], and viruses [144] and hence a spacer is necessary
to maximize the interactions with the analyte. Table 4 details
the studies where DNA and other modifiers were immobi-
lized onto a mixed layer of functionalized alkanethiols.

Attachment followed by incorporation An additional approach
comprises the incorporation of a recognition element into an
SAMof thiols. An SAMof long chain alkanethiols produces a
highly packed and ordered monolayer, which mimics a
membrane-like microenvironment, useful for immobilizing
biological (antibodies, enzymes, nucleic acids) and organic
molecules [32] (Fig. 3e). For example, Radecka et al. [145]

embedded macrocyclic polyamine molecules with long alkyl
chains within 1-dodecanethiol SAM for the detection of
adenine nucleotides.

Silanes

Silane layers applied to electroanalytical devices have been
used in many applications. As mentioned, silanization was
the first reported method for formation of organized SAMs,
as introduced by Sagiv et al. [13]. They demonstrated that
alkyltrichlorosilanes on polar surfaces, i.e., bearing hydroxyl
groups, lead to the formation of chemically bonded organized
monolayers. Introducing silanes onto the electrode surface is
straightforward and involves the covalent attachment of a
silane precursor, i.e., derivatives of either trialkoxy- or
trichlorosilane, through nucleophilic attack of an activated
hydroxyl group (Fig. 4). For this reason, oxides, such as SiO2

[146–148] or indium tin oxide (ITO) [149–152] are often
used, but other metals could be used as well. For example
[153], Ti was anodically treated to obtain TiO2, which was
further treated with NaOH solution, to increase the presence
of –OH groups on the surface.

Silanization requires the immersion of the electrode into
a dry solution of the desired silane, tailoring the conditions in
accordance with the desirable outcome: at room temperature
[147, 148, 152–156] or under slight heating [146]; the
solvent can be either toluene [146–148, 152, 153, 156],
ethanol [146, 154], or acetone [155]; the silane concentration
varies from 1% [146, 152, 155] up to 20% [147]; and the
duration of silanization can vary from 30 min [148, 153] to
overnight and longer [155]. This ability shows the high
flexibility of the process and the ease of obtaining high yields.
On the other hand, it is not surprising that the literature
is full of different protocols that are used to form SAMs
from even the most conventional silane precursors, such as
octadecyltrimethoxysilane and octadecyltrichlorosilane.

Surveying the literature of electroanalytical studies using
silane layers reveals that, similar to thiols, there have been a
few major approaches used for functionalizing the interface.
These include: attachment followed by functionalization,
i.e., modification of pre-attached silane layer; functionaliza-
tion followed by attachment, whereby the silane is modified

Modifier Functionalized thiols Spacer Reference

Antibody Amino-terminated thiols Hydroxyl-terminated thiols [105]

Cytochrome C Carboxylate-terminated thiols Hydroxyl-terminated thiols [92, 135]

Carboxylate-terminated thiols Amino-terminated thiols [133, 134]

DNA Carboxylate-terminated thiols Hydroxyl-terminated thiols [306]

Azide-terminated thiols Hydroxyl-terminated thiols [370]

Au NPs Dithiols n-Alkanethiols [381]

Table 4 Different SAMs based
on mixed thiol and their
electroanalytical applications
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prior to self assembly onto the surface; and attachment
followed by incorporation (Fig. 5).

Attachment followed by functionalization Most electroanalysis-
related studies employ alkylsilanes, which possess a functional
modification on the far end (Fig. 5a). This approach has
been recently reviewed by Schubert et al. [157]. One
important advantage is that it is possible to apply a
broader range of chemical reactions to the silane mono-
layer as they are much more stable, physically and
chemically, compared with other SAMs, such as thiol-
terminated monolayers [157]. Silane precursors cannot
bear many of the possible functionalities, such as acidic
groups, e.g., carboxylic acids, sulfonates, phosphonates,
etc., yet amines, thiols, and alcohols can readily be
attached onto oxides by this approach and used as anchors
for further immobilization of additional functionalities
onto the interface. Accordingly, the mostly applied
functionalities have been amines [146, 150, 153, 154]
and epoxy groups [147, 152, 155, 156], which were
utilized for attaching biologic species, such as proteins
[147], DNA [150], or antigens [153–156], primarily
through the formation of amide bonds.

Other chemical functionalizations were introduced onto
the silane layer through nucleophilic substitution reactions.
For instance, bromine-terminated surfaces were reacted
with various nucleophiles, such as –SCN, –NH2, –SO3

−,
and other, as a means of introducing additional surface
functionalities [157]. This opened a window for the
immobilization of many recognition elements, such as
cyclodextrins [158] and metallic complexes [159].

Functionalization followed by attachment While in most
cases, modification takes place after silanization of the
electrode, it is also possible to functionalize the silane
prior to surface modification (Fig. 5b). Synthetically, this
allows to not only introduce different more sophisticated
functionalities, but also makes it possible to carry out

much better purification and analysis of the precursor
prior to attachment onto the electrode surface. For
example, Sharme et al. [148] coupled silane-modified
polyethylene glycol (PEG) through a single-step coupling
reaction. The PEG–silane was further used to modify a Si
electrode. The thin PEG interfaces were proven to be very
efficient in controlling protein fouling using fibrinogen as
the model protein. Metallic complexes can also be
introduced onto silanes prior to attachment. Gupta et al.
demonstrated the synthesis of an osmium bipyridyl
complex functionalized with a trimethoxy group which was
used for the attachment onto silicon substrate [157, 160].

Attachment followed by incorporation A third option is to
incorporate an external selective factor into an inert matrix
of a silane layer [161, 162] (Fig. 5c). This method takes
advantage of the so-called “disorganized self-assembled
monolayers” (mentioned above), which are purposely
assembled with low organization to afford the incorporation
of additional molecules onto their matrix. The embedded
amphiphilic molecules lead to a better flexibility of the
layers, which can now adopt the best conformation for
higher selectivity. Moreover, the incorporated amphiphiles
are allowed to diffuse laterally in the monolayer and easily
interact with the analyte. For example [161], macrocycle
tetramethylcyclam ligands were introduced into a disorga-
nized monolayer of octadecylsilane attached onto an ITO
electrode for selective recognition of Cu2+ ions.

Another aspect of integrating silanes in electrochemical
analysis is modifying an electrode through the sol–gel
technique [5, 163, 164]. Sol–gel for sensing application has
been reviewed by Walcarius [5], Lev [165], and others.
Since sol–gel materials almost always result in thicker films
and cannot be referred as self-assembled monolayers, we
shall not review these studies.

Examining the various studies where silanes were used
for assembling electroanalytical systems suggests a few
advantages as well as disadvantages of this family of

Fig. 4 Scheme of the
silanization process

Fig. 5 Schematics of the different
approaches for functionalization
of surface through silanization.
a Attachment followed by
functionalization, b functionaliza-
tion followed by attachment,
and c attachment followed by
incorporation
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molecules. Clearly, the advantages stem from the covalent
binding between the surface and the silanes. This results in
highly stable and robust layers that can in principle
withstand harsh conditions. Moreover, the silanization
process is simple, does not require sophisticated equipment
or extreme conditions, and is fairly generic. On the other
hand, the high reactivity of silanes makes it difficult to end
with a monolayer rather than multilayers, which often
blocks electron transfer and are less permeable towards the
analyte. Furthermore, this reactivity limits the “functionaliza-
tion followed by attachment” approach mentioned above.
Finally, attachment can be applied to hydroxylated surfaces,
which is not always the case in particularly for noble
metals such as Pt and Au. Obviously, the best surface for
silanization in terms of electrochemical applications is
silicon, yet, it requires a thin oxide film, which avoids
employing many of the electrochemical methods, e.g.,
voltammetry and amperometry. Hence, it is very likely
that we will witness more electrochemical sensors based
on silane monolayers on Si that employ other electro-
chemical techniques, e.g., potentiometry and impedance,
and particularly will be integrated as part of solid-state
devices such as field effect transistors.

Diazonium

Modification of surfaces with aryl diazonium salts has been
reviewed in detail by Downard [166], Pinson [167], and
Gooding [25]. Briefly, the covalent attachment of molecular
species to surfaces via the electrochemical reduction of aryl
diazonium salts was first reported in 1992 by Pinson,
Savéant, and coworkers [168]. The essence of this approach
involves the formation of a covalent bond between electro-
generated species in the solution and the electrode surface.
This process is usually termed electrografting. Specifically,
the grafting process comprises the electroreduction of
diazonium salt [167], ArN2

+, in aprotic media (mostly
acetonitrile) [168–181] or in an acidic aqueous medium
(such as H2SO4 or HCl, pH <2) [182–185] and in the
presence of NBu4BF4 as a supporting electrolyte. Reduc-
tion of the salt takes place by applying negative potential to
the surface, which serves as a cathode. Reduction can be
effective by either cyclic voltammetry or controlled
potential electrolysis [183]. The reduction involves a one-
electron mechanism producing aryl radical, accompanied
by the release of a stable nitrogen molecule. Such aryl
radicals are unstable and react immediately with the
electrode surface to form a covalent bond. The cathodic
reduction potentials of diazonium salts are relatively
positive, typically around 0 V versus SCE, most likely
due to the stabilization by the aryl group [25, 167, 186].
The stability of the aromatic group prohibits its further
reduction and therefore enhances the reaction with the

surface. The grafting process, which typically takes from
seconds to no more than a few minutes [167, 181] is
described in Fig. 6.

There are several parameters that control the grafting
process and influence the structure of the deposited films.
Among them are: the applied charge (or potential) [171,
176], reduction duration [176, 187], media [171], salt
concentration [180], electrode [166], the substituent in the
para position of the aryl diazonium salt [25], etc. For
instance, Brooksby and Downard [171] applied electro-
chemistry and AFM and concluded that the film thickness
increases with deposition time up to a limiting value of five
layers (ca. 4–6.5 nm for different modifications). Also,
films prepared in acidic aqueous medium were found to
result in lower limiting thickness and surface coverage than
those prepared in acetonitrile. This was attributed to growth of
inherently more blocking films as supported by examination
of the response towards Fe(CN)6

3−/4− couple [171].
Modification of electrodes by aryldiazonium reduction

has some clear advantages. First, the preparation of
diazonium salt is well established in the organic chemistry
literature and involves a one-step synthesis from a wide
range of aromatic amines. This allows modifying the
surface with a wide array of functionalities for a variety
of applications. In addition, the reduction of diazonium
salts leads to the formation of a strong covalent bond
between the electrode and the desired modifier. Researchers
reported on stable modified electrodes for long-term
storage, even under extreme conditions such as sonication
in aggressive organic solvents.

Moreover, a large variety of materials can be modified
by this method: carbon [168, 173, 174, 176–179, 183–186,
188], metals [170, 175, 177, 181, 188], and semiconductors
[167, 169, 181]. In order to create metal–carbon bonds, one
should work with surfaces as free from oxides as possible.
For this purpose, it is necessary to polish the surface very
carefully. Liu and Gooding [177, 188] reported that
electrochemical reduction of 4-carboxyphenyl diazonium
salts on gold electrodes yielded more stable layers (i.e.,
longer storage and withstanding higher repeated cycling
abilities) than n-alkanethiol self-assembled monolayers,
probably due to stronger binding energy [167].

Removing of oxide is also necessary in the case of
silicon. For modifying Si by reduction of diazonium,
hydrogenated silicon should be used. In this case, the
grafting mechanism involves attack of the Si–H bonds on
the surface by the aryl radical to produce a silyl radical. The

Fig. 6 Electrochemical grafting mechanism of aryldiazonium salts
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modification is a result of the recombination of both
radicals to form Si–C bonds [189].

An additional advantage is the cathodic reduction
potentials of diazonium salts. As mentioned above, and
in contrast to many of the other methods (such as
electrochemical oxidation of amines or carboxylates or
oxidative electrolysis of hydrazides [167]), the potential is
mild (<0 V versus SCE) and can therefore be performed
on oxidizable substrates such as iron and other reactive
metals.

The formation of the organic films can easily be
confirmed and characterized using different electrochemical
and spectroscopic techniques. For example, nitrophenyl
groups are excellent reporting groups for electrochemical
studies [167, 179] as they show a quasireversible typical
voltammogram of a nitrophenyl group.

For electroanalytical applications, the discussed method
exhibits an important property as it does not lead to
surface roughening and large background currents.
Moreover, the layers provide a wider potential window
for electrochemical applications than other layers such
as thiols [177, 188]. The organic layer can also protect
the electrode surface from fouling by protein adsorption
[166, 173].

However, this method bears a major disadvantage as
well. The electrodeposition of aryl diazoniums has been
known to produce films from submonolayer up to multi-
layers [166, 167, 169, 175, 176, 181, 190]. Namely, there is
a good possibility for further attacking of the ortho position
of grafted aryl groups by remaining radicals in the solution
to form multilayers [25]. The latter are not desirable in
order to achieve maximum communication via electron
transfer [175]. However, different investigations [166]
have shown that it was possible to obtain either monolayers
or multilayers by controlling the different parameters
(mentioned above). For example, potential sweep methods
lead to thicker films than fixed potential depositions [175].

Limoges and Dequaire [166, 184, 185] were the first to
use grafting of screen-printed graphite electrodes by
diazonium reduction as the first step in the fabrication of
electrochemical biosensors. Diazonium-modified electrode
can be found in electroanalytical applications in two manners,
either as a charged layer [173, 174, 182] or as a substrate
for further functionalization [175, 177, 179, 183–185, 188,
191–194]. In the first approach, the electrodes can be
modified with p-phenylacetate groups by electrografting
of the corresponding diazonium salt [174]. For example, at
pH 7.4, the layer is negatively charged. This can lead to
electrostatic attractions between the surface and dopamine,
which is monocationic in this pH, and repulsion towards
ascorbic acid, which is still in its anionic form under these
conditions. Electrostatic interactions at the electrode
interface are crucial to dopamine adsorption [182] and

permit the detection of concentrations down to nanomolar
level of this neurotransmitter.

For functionalizing the electrode with further modifications,
there are two commonly used diazonium ions: 4-nitrophenyl
and 4-carboxyphenyl. After grafting to an electrode, the
nitro (−NO2) group of the 4-nitrophenyl can be electrically
reduced (in protic media) to amino (−NH2) [178], which
can, in turn, bind to a large selection of compounds, such
as pyrroloquinoline quinine for NADH detection [175],
oligonucleotides for viral DNA sensing [185], protein such
as acetylcholine [193], or glucose oxidase [194] for
biosensing applications or Co(II)tetracarboxyphthalocyanine
complex for thiocyanate catalytic oxidation [179] through
amide bonds. The carboxylic moiety of 4-carboxyphenyl
could also be used for further covalent modification through
amide bonds as well. Liu et al. [35, 177] used oligopeptides
for the selective detection of Cu2+, Cd2+, and Pb2+. Proteins
could also be immobilized in the same manner [192].
Carboxylic groups were also used for the accumulation of
metallic ions, such as Cu2+ and therefore applied for the
detection of contaminants in aqueous media [183]. Most of
these and other modifications are generally assisted by EDC
and NHS used as coupling (cross-linking) agents.

Other layers

Primary and 2° amines have been coupled to electrode
surfaces, mainly glassy carbon electrode (GCE), via oxidation
of the amine head group [166]. The mechanism was studied
by Barbier, Pinson, and coworkers [195] and is believed to
involve the loss of a proton to form an amine radical cation,
followed by further grafting of the radical onto the surface.

The main factor affecting layer formation is steric effects.
Higher molecular weight amines require higher concentrations
or repeating cyclic scans, most probably due to conformational
disorder in the alkyl chain which deters the access of the
amine to the active sites on the surface. For this same reason,
2° amines, although exhibiting a well-defined oxidation
process, lead to low surface coverage. This is attributed to
the substituents hindering the access as well [166]. The ease
of electrochemical formation of SAMs based on primary and
relatively short amines offers a significant advantage that so
far has not been exploited. In other words, it seems that short
and primary amines, which are superior in terms of facile
electron transfer, would form also better SAMs.

However, amines are less common in electroanalytical
applications. One reason is the questionable stability of the
formed layer. The grafted monolayers of amines are easily
oxidized into imine or iminium ions which are readily
hydrolyzed by water molecules resulting in the cleavage of
the layer.

Moreover,ω-functionalized amines, in particular diamines,
often lead to either ring structures, where both functionalities
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are bound to the electrode surface or to the formation of
multilayer structures (through polymerization process). These
impede further modification of the interface.

Generally, the amines used are mostly polyamines
[196–201] that were grafted onto GCE or Au and were
used for detection of metal ions and small organic species.
The attachment of organic amines have also been applied
for introducing additional functionalities onto the electrode
[202–204].

Other functional groups, such as alcohol [15, 205, 206],
sulfonates [15, 191], phosphanate [207], and hydrazines [15,
208, 209] have also been used for assembling SAMs in
electroanalytical applications on different electrode surfaces.

The electrodes

A wide variety of electrode materials have been used for
assembling SAMs. Noble as well as reactive metals, semi-
conductors, e.g., Si, GaAs, and conducting (mostly doped)
metal oxides, such as ITO, have been employed. The
formation of SAMs on noble metals, such as Au and Pt, lay
on chemisorption, whereas SAMs on reactive metals, semi-
conductors, and metal oxides were formed as a result of
covalent binding or in some cases electrostatic interaction
mostly via surface oxides. The following sections describe the
formation of SAMs categorized according to the substrate
where the emphasis is the mechanism of formation and
applications.We focused on the most commonly used surfaces.

Silicon

Silicon, when doped and conducts, can also serve as a
working electrode. There have been attempts and studies on
the formation of SAMs directly attached onto silicon [189,
210, 211]. This usually involved radical mechanism. The
stability of such layers and elimination of oxide formation
requires a highly dense monolayer, which naturally would
completely block electron transfer. Therefore, bare silicon
onto which SAMs were attached has not found, so far, wide
applications in electroanalytical chemistry. On the other
hand, SAMs on Si could be applied for electrochemical
sensors via impedance spectroscopy, potentiometry, and
other methods which are sensitive to changes in the
interfacial charge and conductivity. For example, Yang et
al. [212] used n- and p-Si(111) as a substrate for antigen–
antibody binding. The silicon substrates were immersed in
NH4F to produce H-terminated surface for modification by
amino-functionalized alkene SAM (through addition reac-
tion onto the double bond). Glutardialdehyde was used as a
linker between the SAM and the antigen IgG.

The native oxide layer of Si can be utilized for sensors
based on metal–oxide–silicon field effect transistors [146,

147, 154, 213]. The analysis often relies on changes in the
surface conductivity upon recognition, as measured by
frequency dependent through AC impedance spectroscopy
and DC I–V measurements. The oxide is usually obtained
by thermal oxidation of a silicon substrate. Silanization is
used to modify the insulating surface, where a variety of
functionalities can be introduced, such as amine [146, 154],
epoxy [147], and hydroxy [213]. The SAM can be used as
the recognition factor [146] but is often employed as a
linker for further immobilization of proteins [147], anti-
bodies, and antigens [154].

A nice example of using SiO2 as a substrate for an
electrochemical sensor was demonstrated by Yang and
Kong [214]. Highly sensitive sensors based on capacitance
changes have been developed for the detection of heavy
metal ions by utilization of SAMs on silicon oxide surfaces
between interdigitated electrodes. The sensor was highly
sensitive due to the preconcentration of the metal ions of
and allowed the detection of Cu2+ down to 1.0×10−13 M.

Silicon technology is extremely advanced due to
microelectronics and therefore miniaturization of electro-
chemical sensors based on SAMs on Si could be integrated
as part of the existing technology. Hence, a major advantage
of silicon as a substrate for SAMs is the ease to miniaturize
its dimensions down to micro- and nanoscale features
[148]. There are also applications where Si-based nano-
objects, such as Si nanowires have been used as substrates
for SAMs. For example, Cattani-Scholz et al. [213]
biofunctionalized silicon nanowires by an SAM of
hydroxyalkylphosphonate for DNA detection.

Metals

A variety of metals have been used for assembling SAMs.
This includes the noble metals, such as Pt, Au, and Pd and
some of the more reactive metals, such as Ag and Hg.
Naturally, a noble metal offers a wider potential window
in aqueous and nonaqueous solutions and therefore is
preferable. Moreover, stable well-defined, i.e., single crystals,
oxide-free surfaces can be formed and maintained in
ambient. On the other hand, noble metals are not
expected to react with organic functionalities and bind
strongly to the monolayer. Reviewing the literature and
in particular the electroanalytical applications reveals that
the most commonly used metal is by far gold due to the
strong and quite unique interaction with thiol groups.
This was detailed above (see section “Thiols”).

There are very few studies where SAMs were formed on
Pt [215–219]. Thiols, amines, and pyridines were reported
to adsorb onto Pt and form stable SAMs, yet we are aware
of only one report dealing with electroanalytical chemistry.
Specifically, Niu et al. [217] reported that 4-pyridyl
hydroquinone adsorbed on a platinum electrode through
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the pyridine nitrogen forming stable SAMs. The electro-
catalytical oxidation of hydrazines was performed by the
modified electrode. The overpotential of hydrazines was
decreased markedly at the modified electrode, and the latter
was used in a flow system.

Similarly, we are aware of only a few studies of SAMs
on silver that were electroanalytically oriented [56, 220].
Although carboxylic acids are strongly adsorbed on Ag
(covered by an oxide) and also thiols are claimed to be
strongly adsorbed on this metal, the potential window is
quite limited to negative potentials, and its surface cannot
be easily renewed like Hg. One example, which utilizes a
silver surface for SAMs, was reported by Zhang [56].
Specifically, the direct electrochemistry of hemoglobin
was studied by cyclic voltammetry and flow injection
analysis on a silver electrode modified by an SAM of
lipoic acid. Experimental data show that the layer
promoted the redox process of hemoglobin and linear
relationship between the oxidative peak current, and the
concentration of this substance was obtained in the range
of 5.0×10−7–1.5×10−5 M.

The uniqueness and advantages of a mercury surface that
are due to its flatness, electronic conductivity, and high
affinity toward many organic functional groups, have
well been recognized and applied for the formation of
two-dimensional organized systems. As a result, the
adsorption of numerous organic compounds on electrified
Hg interfaces has been studied [221–230], and theories
accounting for the effect of the interfacial potential on the
organization of the adsorbates have been developed.

In spite of the fact that SAMs on solid electrodes can
easily be studied, it is evident that these surfaces, e.g.,
gold, cannot be atomically flat over large areas. As a
consequence, the resulting monolayers accommodate
defects such as pinholes and grain boundaries [231–
233]. Moreover, the lattice structure of the solid substrate,
rather than intermolecular forces, governs the organization
of the adsorbed molecules. On the other hand, liquid
mercury offers a reproducible atomically flat surface on
which many adsorbed molecules can form a perfect
condensed film, where the interactions between adsorbed
molecules determine the organization of the 2D array of
molecules.

The affinity of thiols toward mercury is well documented
[21]. Nonetheless, most of the studies focused on short,
water-soluble thiols such as cysteine [234–237] and
thiouracil [238, 239], whereas the formation of SAMs of
alkanethiols on mercury has attracted only little attention
[21, 22, 29, 30, 240–244]. Specifically, Demos and
Harrison [241], Majda and his coworkers [30], and us
[20, 21] reported on the formation of an extremely
impermeable, low-defect density alkanethiol monolayer on
mercury.

Hence, Hg has the advantages of both noble metals
due to its well-defined surface and reactive metals for the
ease of formation of SAMs. Nevertheless, it seems that
the toxicity and infirmity of mercury have distracted
scientists from applying it for sensing. One of the very
few studies using SAMs on Hg for electroanalytical
applications was reported by us [22]. We have shown that
ω-mercaptoalkanoic acid monolayers on mercury thin
films exhibit high selectivity towards Cd2+. We found that
shorter ω-mercaptocarboxylic acids provided superior
sensitivity. Optimizing the electrode response resulted in
a detection limit of 4×10−12 M of Cd2+. Thiolated
recognition elements, e.g., cyclodextrin, have also been
assembled on Hg and used for the detection of inorganic
ions [19].

Carbonaceous materials

Carbonaceous materials are highly widespread in electro-
analytical studies. This family of electrodes bears several
advantages as they exhibit a wide range of kinetic
properties and are electrochemically inert over a wide
potential window [245]. In addition and far more interesting,
the carbon surface enables adsorption of a variety of
compounds by both the nonspecific physisorption and
the specific chemisorption [182, 245]. Specifically, these
electrodes bear high complexation capacities compared to
metallic materials, resulting in a higher sensitivity of the
surface. As will be discussed below, the modifiers are
typically bound to the carbonaceous surface through
strong covalent bonds, yielding a stable system even
under extreme conditions, such as high temperatures and
sonication in various solvents [25, 166]. Additionally,
carbonaceous materials are relatively reasonably priced
and therefore suitable for industrial applications and as
components in disposable systems [246].

There are several types of carbonaceous surfaces used as
substrates for SAMs in electroanalytical applications. The
most common electrode is GCE [245] as it is isotropic, very
hard with low porosity, good stability in corrosive media,
and high conductivity. GCE is easily covered by organic
contaminations. Those can be removed by polishing the
GCE followed by anodic polarization. The surface of GCE
is relatively undefined and consequently has many catalytic
sites [247]. The heterogeneous topography of the surface
complicates electron transfer from and to the GCE,
increases the capacity and background current of this
electrode and adversely affects the detection limit for
sensing applications. The undefined structure of a GCE
surface also leads to poor reproducibility, especially after
modification, as different GC electrodes, even from the
same type, reveal different behavior [166]. Reproducibility
can be obtained only when using the same electrode or
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newly fabricated electrodes with identical material and
fabrication procedure.

Other common electrodes are screen-printed carbon
electrodes [183, 184, 196, 248, 249], carbon paste electrodes
(CPE) [250, 251], carbon fibers [182, 252], highly ordered
pyrolytic graphite (HOPG) [178, 186, 247, 253], doped
diamonds [254–256], and carbon-containing composites
[257–259]. Each electrode has its own advantages and
drawbacks. For example, HOPG is the only carbon
electrode with a well-defined structure as it is built from
crystallographic planes. The highly organized structure
can lead to a better understanding of electron transfer.
Moreover, the crystallographic planes can be cleaved,
exposing a fresh basal (surface) plane for further use.
However, the lack of functional groups on the surface
and the lower reactivity of basal plane carbon compared
to the edge carbon (as in GCE), make this material less
suitable for modifications. It is believed that much of the
catalytic activity, electron transfer, and chemical reactivity of
graphitic carbon electrodes are at surface defect sites [247].

CPE is made of a homogenized paste of finely dispersed
coal and a water-immiscible binding liquid like paraffin or
petrolatum [245]. On one hand, CPE has a well-developed
surface with high adsorptive abilities; on the other hand, it
exhibits high background currents caused by adsorption and
percolation of oxygen into the paste. This effect can be
slightly reduced by applying either positive or negative
potentials.

Doped diamonds have some very special material
properties, such as extremely high hardness, thus opening
up new opportunities for work under extreme conditions,
e.g., at high anodic potentials or in chemically aggressive
media [254]. The drawback is their relatively high price as
they are made of hardly accessible materials, whose
preparation requires high temperature and pressure. An
optional solution is to grow a thin layer of the doped
diamond on top of lower priced substrates using gas or
plasma phase deposition procedures [256].

Carbon fibers possess very large surface areas compared
to disk electrodes and therefore exhibit high sensitivity.
However, working with carbon fibers requires solving the
problem of structural ordering which influences the
reproducibility of measurements [245].

A main drawback of carbonaceous electrodes is their
tendency to adsorb interfering molecules and contamina-
tions. For example, in biologic media, these electrodes tend
to be fouled by proteins. Furthermore, the analyte itself can
be physisorbed onto the electrode surface, which might
disrupt the recorded signals. Therefore, it is necessary to
protect the interface in a way that would allow only the
recognition interaction to occur.

Modification of carbon electrode with functional coat-
ings can greatly improve their sensing properties. The

common modifications found in electroanalytical studies
are organic layers. Other modifications, such as sol–gel
[260], silica [261–263], or mesoporous silica [264–266]
are also optional for carbon surfaces, but due to their
somewhat bulky structure we will not discuss them in this
review.

There are few main approaches to covalently modifying
carbon surfaces with organic monolayers [166]. The earliest
approach, suggested by Barbier and Pinson [195], is
oxidation of primary amines, yielding amine radicals which
can couple with the carbon via formation of C–N bonds
[203, 257, 259, 267–269]. In order to form C–C bonds,
either reduction of aryl diazonium salts [35, 168, 174,
177–179, 182–186, 188, 268] or oxidation of arylacetates
[270] can be applied. Both mechanisms involve the release
of a stable molecule, N2(g) and CO2(g), respectively,
resulting in reactive aryl radicals near the surface. Less
common is the electrolysis of hydrazide derivatives under
oxidative or reductive conditions [208, 209].

All the abovementioned methods involve the formation
of radicals in the solution. Alternatively, and exclusive to
carbonaceous materials, it is possible to alter the
functionality of the electrode surface, which can further
react and bond to the modifying species in the solution.
Formation of surface aromatic radicals was originally
obtained by heat treatment under vacuum or Ar plasma
etching and mechanical abrasion [166]. Nowadays,
surface radicals are electrochemically generated by
anodizing the carbon electrode under high positive
potential (2 V versus SCE) [205, 206]. In an anhydrous
solution of primary alcohol, the aromatic radicals on the
surface undergo nucleophilic attack by the alcohol to form
an ether (C–O–C) linkage.

There are few studies that use silanization for modifying
carbon electrodes. For silanization to occur, hydroxyl
groups must exist on the surface. Therefore, this method
is applicable for doped diamond electrodes [271] where
hydroxyl groups can be introduced to the electrode surface
by either anodic polarization or oxygen plasma treatment.
Dai et al. [272] and Hoa et al. [155] demonstrated
silanization of GCE. Surface hydroxyl groups are electro-
chemically formed by anodizing the electrode in a slightly
acidic solution (pH 5.0). Weaker bonding is also optional
through physisorption of the layer. For example, Bath et al.
[182] modified carbon fiber electrodes by physisorption of
2,6-anthraquinone disulfonic acid.

The analyte

SAMs have been used in electroanalytical chemistry for the
detection and determination of analytes spanning from
metal ions, through organic molecules, to biomolecules.
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Table 5 The analytes, the SAMs, and the substrates used in electroanalytical applications

Analyte SAM Electrode Reference

Inorganic analytes

H+ Carboxylate-terminated thiol Gold [62]

n-Alkanethiol Gold [311]

Cysteine Gold [392]

Thiolated recognition elements Gold [126, 338]

Cu2+ Carboxylate-terminated thiol Gold [35, 46, 48, 52, 58, 98,
99, 301, 365, 368, 393]

Amino-terminated thiol Gold [91, 394]

Cysteine/penicillamine Gold [63, 66, 69, 71, 74]

Sulfonate terminated thiol Gold [83, 84]

Amine-terminated dendrimer Gold [202]

Carboxyphenyl diazonium Gold [177]

Carboxyphenyl diazonium SPCE [183]

Cd2+ Carboxylate-terminated thiol Gold [44, 62, 365, 366, 395]

Carboxylate-terminated thiol Mercury [22]

Thiol-terminated alkanethiol (dithiol) Gold [42]

Carboxyphenyl diazonium Gold [177]

Pb2+ Carboxylate-terminated thiol Gold [48, 365, 367]

Amino-terminated thiol Gold [394]

Thiolated recognition elements Gold [319, 335]

Carboxyphenyl diazonium Gold [177]

Cr (VI) Thiolated pyridine Gold [43, 315]

Fe2+/3+ Carboxylate-terminated thiol Gold [61]

Sulfonate-terminated thiol Gold [85]

Hg2+ Carboxylate-terminated thiol Gold [50]

Imidazole-terminated thiol Gold [314]

Thiolated DNA Gold [141]

Lanthanides Carboxylate-terminated thiol Gold [51, 53, 57]

Alkali metals Carboxylate-terminated thiol Gold [396, 397]

Thiolated recognition elements Gold [299, 398]

n-Alkanethiol Gold [399]

Alkaline earth metals Thiol-terminated alkanethiol (dithiol) Gold [400]

n-Alkanol GCE [206]

Other metal ions (UO2
2+, Zr(IV), Ag+) Carboxylate-terminated thiol Gold [340, 393]

Amino-terminated thiol Gold [401, 402]

Hydroxyl-terminated thiol Gold [403]

Thiolated recognition elements Gold [220, 339]

H2O2/O2
- Amino-terminated thiol Gold [106, 107, 363, 390, 404]

Cysteine Gold [118, 352, 361, 362, 391]

Mixed hydroxyl/amino and carboxylate-
terminated thiols

Gold [92, 128, 133–135]

n-Alkanethiol Gold [353]

Phosphanate-terminated thiol Gold [364]

Thiolated recognition elements Gold [278]

Amino-functionalized recognition elements GCE [192]

Amino-terminated amine (diamine) Gold [405]

Other inorganic analytes: ions
(CN−, NO2

−, PO4
3−, SCN−) and

molecules (O2 and NO)

Carboxylate-terminated thiol Gold [350, 406]

Amino-terminated thiol Gold [123, 407, 408]

Penicillamine Gold [351]
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Table 5 (continued)

Analyte SAM Electrode Reference

Thiolated recognition elements Gold [409]

Thiolated recognition elements Mercury [19]

Nitrobenzene diazonium GCE [179]

Organic analytes

Dopamine and other catecholamines Carboxylate-terminated thiol Gold [45, 47, 54, 55, 59, 96, 410]

Amino-terminated thiol Gold [78, 81, 90, 342, 343, 411]

Cysteine/penicillamine Gold [67, 70, 72, 73, 359]

Thiolated recognition elements Gold [131, 298, 322, 331]

Mixed amino and carboxylate-terminated
thiols

Gold [386, 387]

Thiol-terminated thiol (dithiol) Gold [381]

Phosphanate-terminated thiol Gold [412]

Hydroxyl-terminated thiol Gold [413]

Carboxyphenyl diazonium Carbon [174, 182]

Uric and ascorbic acids Carboxylate-terminated thiol Gold [47, 49, 60, 113, 414]

Amino-terminated thiol Gold [343, 411]

Cysteine Gold [117]

Thiolated recognition elements Gold [131, 322, 360]

Mixed amino and carboxylate-terminated
thiols

Gold [386, 387]

Carboxyphenyl diazonium GCE [174]

Glucose, fructose, and derivatives Carboxylate-terminated thiol Gold [100–103, 116, 345–347, 355, 415, 416]

Amino-terminated thiol Gold [103, 286, 348, 417, 418]

Thiolated recognition elements Gold [324, 419, 420]

Mixed thiol and carboxylate-terminated thiols Gold [127]

Aminophenyl diazonium Diamond [115]

Amino-terminated silane TiO2 [153]

Amino acids Carboxylate-terminated thiol Gold [357]

Hydroxyl-terminated thiol Gold [119, 121]

Thiolated recognition elements Gold [275, 321]

Phosphanate ITO [207]

Toxins and pesticides Amino-terminated thiol Gold [38, 122]

n-Alkanethiol Gold [75, 285]

Thiol-terminated thiol (dithiol) Gold [313]

Epoxysilane ITO [152]

Nitrobenzene diazonium SPCE [193]

Drugs Carboxylate-terminated thiol Gold [375]

Amino-terminated thiol Gold [79, 115]

2-Alkanethiol Gold [371]

Avidin Gold [125]

Explosives n-Alkanethiol Gold [77]

Thiolated recognition elements Gold [323, 332]

Acids (carboxylic, fatty, cafeic acid, etc.) Carboxylate-terminated thiol Gold [65]

Amino-terminated thiol Gold [114, 421]

n-Alkanethiol Gold [422]

Thiolated recognition elements Gold [336]

Cysteine Gold [414]

Amines (urea, catechin, spermidine,
atrazine, phenothiazine, adenosine,
adenine dinucleotide, etc.)

Carboxylate-terminated thiol Gold [423]

Thiol-terminated thiol (dithiol) Gold [380]

Hydroxyl-terminated thiol Gold [424]
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Every possible interaction between the monolayer and the
analyte has been exploited; coordination chemistry, electro-
static interactions, hydrogen bonding, hydrophobic, and
hydrophilic interactions and evidently, enzyme–substrate

and antigen–antibody interactions. One of the advantages of
SAMs is the ability to control their organization, which
affects and tunes the monolayer–analyte interactions. In
general, increasing the selectivity of the monolayer usually

Table 5 (continued)

Analyte SAM Electrode Reference

Mixed azide and carboxylate-terminated thiols Gold [370]

Thiolated recognition elements Gold [125, 145, 344]

Mono and polyalcohols and phenols
(primary alcohols and phenols,
quinines, catechol, dopa, dopac, etc.)

Carboxylate-terminated thiol Gold [354, 414]

Amino-terminated thiol Gold [104, 129, 130, 358, 425]

Thiol-terminated thiol (dithiol) Gold [382]

Cysteine Gold [37]

Bio analytes

Proteins Carboxylate-terminated thiol Gold [124, 284, 373, 426]

Carboxylate-terminated thiol Silver [56]

Amino-terminated thiol Gold [385]

Cysteine Gold [376]

Thiol-terminated thiol (dithiol) Gold [379, 383]

n-Alkanethiol Gold [427]

Thiolated recognition elements Gold [140, 143, 273, 308, 333]

Amino-terminated amine (diamine) GCE [203]

Epoxysilane SiO2 [147]

Silanized PEG SiO2 [148]

Peptide Carboxylate-terminated thiol Gold [414]

Amino-terminated thiol Gold [309]

Thiolated recognition elements Gold [428]

DNA Carboxylate-terminated thiol Gold [97, 108–111, 356, 429]

Amino-terminated thiol Gold [82, 112, 300, 307, 369, 389]

Cysteine Gold [372]

Hydroxyl-terminated thiol Gold [430, 431]

Thiolated recognition elements Gold [132, 136–139, 142, 327, 337, 432]

Amino-terminated silane ITO [150]

Aminophenyl diazonium Carbon [185]

Bacteria Carboxylate-terminated thiol Gold [95, 306]

Amino-terminated thiol Gold [105]

Thiolated recognition elements Gold [310, 328, 329, 433, 434]

Epoxysilane GCE [155]

Viruses Thiolated recognition elements Gold [144, 435]

Antigens Carboxylate-terminated thiol Gold [93, 374, 436]

Amino-terminated thiol Gold [377, 378]

Epoxysilane SiO2 [156]

NADH Amino-terminated thiol Gold [80, 94]

Cysteine Gold [64]

Nitrophenyl diazonium Carbon [175]

Hydrazine Carbon [208]

Steroids Thiolated recognition elements Gold [301, 326]

Vitamins Amino-terminated thiol Gold [68]

Cysteine Gold [388]

NADH nicotinamide adenine dinucleotide, SPCE screen-printed carbon electrodes
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requires a more complex (and therefore larger) functionality
at the end pointing outward of the SAM. Table 5 divides
much of the reported work into three categories: inorganic
species, organic compounds, and biomolecules.

The electrochemical techniques

Electrochemistry is used as a means of transducing the
chemical interactions between the monolayer and the
analyte into an electrical signal. The sensitivity depends to
a large extent on this transduction. The choice of the
electrochemical technique is dictated by a few factors such
as the substrate, the analyte, the required sensitivity,
medium, etc. We often find that the same species, e.g.,
metallic ions, can be detected by different electrochemical
techniques, using different approaches based on SAMs.
Electrochemistry is an inherently sensitive technique due
to the Faraday constant, which enables the detection of
the charge or current of much less than a monolayer of
electroactive species. Hence, most studies have used
either voltammetry or amperometry, which are based on
measuring the current, as the detecting method in
conjunction with SAMs. The combination of SAMs as
the selective element and voltammetry techniques, e.g.,
square wave voltammetry, resulted in extremely high
sensitivity [22, 46, 66, 96, 263, 273, 274]. SAMs have
also been used to enhance the underpotential deposition
and stripping peaks [44, 48, 83, 275–277]. Voltammetry
methods have been very popular in cases where electron
transfer was facile, namely, upon applying short chain and
disorganized SAMs. There are numerous reports where
SAMs have been used as the molecular glue (or spacer) for
attaching biomolecules, such as enzymes. Amperometry is
often used in biosensors based on SAMs, whereby
catalytic activity of the monolayer takes place [278–283].
Recently, we find an increase in the number of studies
where carbon nanotubes and metallic particles are
attached onto solid electrodes via SAMs, and detection
is carried out amperometrically [198, 246, 249, 280, 281,
283–293].

On the other hand and as mentioned above, the
application of different SAMs on Si, SiO2, and other
semiconductors and metal oxides have been combined with
potentiometry, which is based on potential change and
does not involve the flow of charge. When either the
layers are formed on an insulator, e.g., SiO2, or electron
transfer is blocked due to the application of highly dense
and long chain functionalized alkanes, voltammetry and
amperometry cannot be used. Yet, the interfacial proper-
ties, such as charge and work function are still altered by
adsorption. Hence, there have been numerous studies
aiming at using SAMs as the selective factor in MOSFET

or other miniaturized devices where detection is based
either on potentiometry or on I–V measurements, which
are affected by the selective adsorption of different
analytes on SAMs assembled on a dielectric insulator
[50, 146, 147, 294–297].

A particularly appealing and common technique is
electrochemical impedance spectroscopy, which has been
very often applied for detecting electrochemically inactive
species by SAMs modified electrodes [81, 93, 125, 143,
298–305]. Different approaches have been used. The charge
transfer resistance of different electroactive species, which
was affected by the selective attachment of analyte onto the
SAMs, has been monitored. Alternatively, the capacity of
the interface, which was influenced by the association of
the monolayer with charged species, was followed.
Impedance spectroscopy allowed analysis of interfacial
changes originating from biorecognition events at electrode
surfaces and therefore has been very often employed for the
determination of DNA fragments [96, 124, 303, 306, 307],
antigen–antibody interactions [153, 155, 271, 296, 304, 305,
308–310], etc. The reported detection limits of these systems
have been remarkably low.

Perspective and prospective

The first studies using SAMs for electroanalytical
chemistry appeared in the early 1990s. Since then, a few
hundreds of papers in this topic have been published. The
term “self-assembled monolayer” has been used for almost
any type of monolayer regardless if the layer was organized or
not. It is almost impossible to review and categorize the
literature and keep updated in this constantly growing field,
yet it is possible to draw a few conclusions and predict to
some extent the development that is envisaged:

1. Clearly, SAMs offer some significant advantages in
electrochemical sensors. Their ease of preparation and
implementation attracts more and more studies. There
are almost no limitations as to the nature of analyte that
can be detected by electrochemical means, be it
electrochemically active or inactive.

2. The main approaches for assembling such sensors are
either functionalizing the monolayer precursor before
or after attachment onto the surface. These two
approaches provide high versatility, yet require good
organic synthetic tools and experience.

3. We are witnessing an enormous number of studies that
utilize nano-objects, such as nanoparticles and nano-
tubes attached onto solid electrodes via self-assembled
monolayers. In these cases, the monolayers are used as
either simple spacers or in some cases for introducing
also recognition elements. It is envisioned that these
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complex systems where nano-objects, biomolecules,
and SAMs are integrated for amplifying the highly
selective measurement of different species, will
substantially increase.

4. It is predicted that SAMs will eventually be integrated
in silicon technology. Organic molecules will be the
bridge between micro- and nanoelectronics and sensing
and diagnostic devices. It is hard to foresee the future
of medical diagnostics without SAMs.

5. In spite of the many advantages that SAMs offer, they
suffer from lack of robustness. This has avoided so far
the implementation of monolayers, such as Langmuir–
Blodgett films in real-world applications. Hence, it is
evident that in order to use SAMs in many applications,
ways to increase their robustness must be developed.
Two possible approaches comprising cross-linking or
thickening can be suggested. Cross-linking means the
formation of monomolecular polymeric films. Several
studies undertaking this approach have already
appeared. The other approach is to bridge SAMs and
polymers in terms of thickness. Increasing the thickness
of SAMs to 10–20 nm will allow using them in
electrochemical sensors and at the same time will
increase their stability.

Finally, it is evident that the application of self-
assembled monolayers in electroanalytical chemistry has
still not peaked. It is very likely that we will witness
many more exciting studies and new ideas where these
monomolecular layers are integrated in electrochemical
sensors. There is still a lot of room at the nanometer scale
of the interface.
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